Ответ:
|a+b| = 49.
Объяснение:
По теореме косинусов:
|a+b| = |a|² + |b|² -2*|a|*|b|*Cos(180-α), где α - угол между векторами. Или
|a+b| = 25+64 -2*5*8*(1/2) = 49.
Согласна, но считаю, что касательная может быть и с той же стороны от точки о, что и касательная. тогда мы будем не прибавлять к радиусу, а вычитать из него. 13-5=8.
итог 2 ответа: 8 и 18
Диагонали ромба пересекаются под прямым углом и делятся точкой пересечения пополам
Половина большей диагонали - 8 см.
Получили прямоугольный треугольник с гипотенузой c = 10 см
и катетом a = 8 см.
Второй катет: b = √(c²-a²) = √(100-64) = √36 = 6 (см)
Значит, вторая диагональ ромба: d₂= 6*2 = 12 (см)
Площадь ромба: S = d₁d₂/2 = 12*16/2 = 96 (см²)
Ответ: 96 см²
Опустить высоту из верхней вершины к нижнему основанию.
Образуется прямоугольный треугольник.
Т.к. угол при основании равен 45 градусов, то треугольник равнобедренный, поэтому высота трапеции ( катет треугольника) равна другому катету, а он равен
(10-4)/2=3
Отсюда площадь трапеции равна полусумме оснований на высоту
(10+4)/2*3=21
1) с=3*-2i+3*2j-2*3i=-12i+6j
2)с=4*-2i+4*2j-3i=-8i+5j