Рассмотрим
получившиеся треугольники АВС и АДЕ:
<span>
Угол А – общий. Углы
АВС и АДЕ равны как соответственные
углы образованные параллельными
прямыми, пересеченными секущей</span><span>
Значит данные
треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника
соответственно равны двум углам другого треугольника, то треугольники подобны.
</span> Сторона АЕ треугольника
АДЕ равна АС+СЕ:
АЕ=8+4=12 см.
Зная это, мы можем
найти коэффициент подобия треугольников:
<span>k=АЕ/АС=12/8=1,5</span>
Найдем стороны треугольника
АДЕ:
<span>АД=АВ*k=10*1.5=15 см.</span>
<span>ДЕ=ВС*k=4*1,5=6 см.</span>
ВД=АД-АБ=15-10=5 см.
Ответ: ВД=5 см. ДЕ=6 см.
В треугольнике АВ1А1 по теореме Менелая:
(ВС1/С1А)*(АР/РА1)*(А1С/СВ) = 1. Подставим известные соотношения: ВС1/С1А = 1/1 (СС1 - медиана), СА1/ВС=1/3 (СА1/А1В=1/2 - дано ). Тогда (1/1)*(АР/РА1)*(3/1) =1 => АР/РА1 = 3/1.
Ответ: медиана СС1 делит отрезок АА1 в отношении АР:РА1 = 3:1.
Без применения формулы Менелая.
Проведем С1К параллельно ВС. С1К - средняя линия треугольника АВА1, так как точка С1 делит сторону АВ пополам, а отрезок КС1 параллелен стороне ВС по построению. Треугольники АС1К и АВА1 подобны с коэффициентом k=1/2. АК=КА1. Треугольники РС1К и РСА1 подобны с коэффициентом k=1/1 (то есть равны, так как СК=(1/2)*ВА1). КР=РА1.Тогда АР = 3*РА1. То есть отношение АР/РА1 = 3:1.
Высота в 2 раза меньше образующей, значит, угол между радиусом и образующей в прямоугольном треугольнике (который образован высотой, образующей и радиусом основания) равен 30 градусам.
Высота h = tg30 * R = 10/√3
Образующая l = 20/√3
V = πR²*h/3 = 1000π / 3√3
Sполн = πR²+πRl = 100π+200π/√3 = π(100√3+200)/√3
<span>Треугольники PDS и SDR равны по трем сторонам: RS=PS, DP=DR, а DS- общая сторона. Значит <RDS = <PDS (в равных тр-ках против равных сторон лежат равные углы. Три угла <PDR,<RDS и <PDS в сумме равны 360°, значит <RDS = (360°-100°):2 = 130</span>