Примем, что диагонали ромба равны: ВD=12 и АС=16.
Сторона основания (ромба) находится по Пифагору:
АВ=√(АО²+ВО²)=√(6²+8²)=10.
Площадь ромба равна: S=(1/2)*D*d=S=(1/2)*16*12=96.
В треугольнике АВС АМ и ВО - медианы и по свойству медиан точкой пересечения делятся в отношении 2:1, считая от вершины.
Значит ОР=ВО:3=6:3=2. Тогда РD=PO+OD=2+6=8.
Площадь ромба равна и произведению высоты ромба на его сторону, то есть S=a*h, отсюда h=ВН=S/a=96/10=9,6.
Прямоугольные треугольники НВD и KPD подобны и КР/ВН=PD/BD или КР/9,6=8/12, отсюда КР=8*9,6/12=6,4.
В прямоугольном треугольнике SKP угол SKP=60°, значит <KSP=30° и КР=0,5КS.
Тогда по Пифагору SP=√[(12,8)²-(6,4)²]=6,4√3.
Объем пирамиды равен (1/3)So*h, где Sо - площадь основания, а h - высота пирамиды. Тогда V=(1/3)*96*6,4√3=204,8√3.
Ответ: V=204,8.
Там все легко) удачи вам)
Решение. ( см. рисунок)
Обозначим К и Т - точки касания окружности со сторонами АВ и АС соответственно.
Так как АО-биссектриса угла А, то угол КАО равен углу ТАО.
Обозначим
по катету (ОК=ОТ=r вписанной окружности) и острому углу.
Из равенства треугольников следует, что OD=ОЕ.
Найдем в треугольнике АDO
Угол ADO смежный углу KDO
Треугольник ADO- равнобедренный, острые углы равны α,
AD=DO,
DO=OE
Аналогично докажем, что АЕ=ЕО.
AD=DO=OE=AE
Мама - сущ, подлежащие
Позволила - глагол , сказуемое
Мы - местоимение , подлежащие
Съездили - глагол , сказуемое
С друзьями - сущ, дополнение
другой - прил
город - сущ, дополнение
сторона правильного шестиугольника равна радиусу, описанной около него окружности.
найдем сторону/радиус:
12:6=2
D=2r
Диаметр равен двум радиусам
d=4
ответ: 4