Для олимпиады это несложная задача. Раз уж треугольник прямоугольный, то один из его углов равен 90°. Пусть а – длина одного из катетов. Это известная величина. Обозначим через х неизвестную длину второго катета и у – длина гипотенузы (тоже неизвестная величина). Длина второго известного отрезка d равна сумме длин второго катета и гипотенузы d = х + у. Отсюда выразим длину гипотенузы через длину второго катета и известной величины d:
у = d – х (1)
Еще раз повторю, что величины d и а мы знаем. Неизвестны х и у. То есть в уравнении (1) две неизвестные величины. Надо еще одно уравнение, чтобы найти 2 неизвестные величины. Так как треугольник прямоугольный, то используем теорему Пифагора, что сумма квадратов катетов равна квадрату гипотенузы. То есть, а² + х² = у² или
у² - х² = а² (2)
Итак, получили 2 уравнения (1) и (2) с двумя неизвестными х и у. Из уравнения (1) величину у подставим в уравнение (2). Имеем (d – х)² - х² = а². Вычисляем d² - 2dх + х² - х² = а². То есть d² - 2dх = а². Отсюда находим неизвестную величину х = (d² - а²)/2 d. Подставляем это выражение в уравнение (1) и находим у = d – х = d - (d² - а²)/2 d. Итак, мы вычислили величину второго катета и гипотенузы через известные величины
х = (d² - а²)/2d (3)
у = d – х = d - (d² - а²)/2d (4)
Проверим эти формулы. Пусть а = 3 и d = 9. Из формулы (3) находим х = 4 (это длина второго катета) и у = 5 – это длина гипотенузы.