∠КВС = ∠KAD как накрест лежащие при пересечении параллельных прямых ВС и AD секущей АК.
∠К -общий для треугольников AKD и ВКС, ⇒
ΔAKD подобен ΔВКС по двум углам.
KB : KA = KC : KD = BC : AD
KB : (1,5 + KB) = 1,2 : 1,8 = 2 : 3
3·KB = 3 + 2·KB
KB = 3 см
KC : (1,2 + KC) = 2 : 3
3KC = 2,4 + 2KC
KC = 2,4 см
Ответ: сторона АВ продолжена на 3 см, сторона CD продолжена на 2,4 см.
Площадь треугольника:
S = 1/3*sqrt((9+12+15)(12+15-9)(9+15-12)(9+12-15))=
=1/3*sqrt(36*18*12*6) = 72.
<span><span><em> На стороне АС как на основании по одну сторону от нее построены два равнобедренных треугольника АВС и АМС. Прямая ВМ пересекает сторону АС в точке Е. <u>Найдите длину отрезка СЕ,</u> если периметр треугольника АМС равен 30 см, а его основание на 3 см больше боковой стороны.
</em>---------
</span>Рассмотрим треугольники АМВ и СМВ
<span>АВ=ВС, АМ=МС, МВ - общая. Эти треугольники равны. ⇒
</span><span>∠ АМВ=∠СМВ.
</span>Углы АМЕ и СМЕ дополняют их до 180º, следовательно, они тоже равны.</span>⇒
<span>МЕ -биссектриса угла АМС и по свойству биссектрисы равнобедренного треугольника является медианой. ⇒
</span>АЕ=ЕС.
Пусть АМ=СМ=х
Тогда АС=х+3
Р Δ АМС=х+х+х+3=30 см
х=9
АМ=СМ=9 см
АС=9+3=12 см
<span>СЕ=12:2=6 см</span>
поскольку площади сечений, параллельных основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды запишем отношения площадей основания и следующего сечения следующим образом:
Обозначим площади буквами А.
A1/400=h^2(3/4)^2:h^2
A1=400*9/16=225
для следующего сечения аналогично:
A2/400=h^2(1/2)^2:h^2
A2=400/4=100
И для самого верхнего:
А3/400=h^2(1/4)^2:h^2
А3=400/16=25
Ответы 25,100 и 225
Ответ:LC - расстояние от точки L к CL, ∠ LCK = 90°. Рассмотрим прямоугольный треугольник CKD, по т. Пифагора:
Поскольку ∠LKC = ∠KLC , то ΔLKC - равнобедренный прямоугольный треугольник ⇒ CK = CL = √13. Тогда по теореме Пифагора из прямоугольного треугольник
Объяснение: