В основе правильной четырехугольной пирамиды лежит квадрат. А угол скорее всего - это линейный угол двугранног угла между плоскостью боковой грани ы плоскостью основы.Высота опущена в центр квадрата. Половина основания пирамиды - один из катетов треугольника, второй - высота, а гипотенуза - это высота, проведенная по боковой поверхности пирамиды.
Один катет = Половине основания пирамиды =6/2=3
Гипотенуза = Половине основания пирамиды /косинус угла = 3 : 1/корень 3 = 3 корень 3
Второй катет = высота = Корень (Гипотенуза в квадрате - Половине основания пирамиды в квадрате) = корень ((3 корень 3) в квадрате - 3 в квадрате) = корень (9 х 3 - 9)= 3 корень2
Пусть х (градусов) - угол А, тогда угол В = (60+х), тогда угол С =2х.
Зная ,что сумма углов треугольника составляет 180 гр.
х+(60+х)+2х=180
х+60+х+2х=180
4х=120
х=30
Дальше находишь остальные)
Ответ: 30-А;90 - В; 60-С
Площадь трапеции равна произведению высоты на получумму оснований. Тогда площадь Вашей трапеции 5*(4+8)/2=30.
Определение: <span><em>Правильная треугольная призма</em></span><span><em> — призма, в основаниях которой лежат два правильных треугольника, а все боковые грани строго перпендикулярны этим основаниям.</em></span>
Площадь полной поверхности призмы - сумма площади боковой поверхности и площади двух оснований.
Боковые грани перпендикулярны основаниям, ⇒ они прямоугольники.
S бок=Росн•h
Р осн. =3а
а=АС=ВС=АВ
По т.Пифагора
АС=√(AC²-CC1²)=√144=12
S бок=3•12•9=324 см²
S осн=(а²√3):4
2 S осн=2•144•√3):4=72√3 см²
S полн=324+72√3=36(9+2√3) см² ≈448,7 см<span>²</span>
Угол будет равен 45°,т.к стороны bf равны и еще какая то и образуют угол 90° а fc делет этот угол т.к она бессиктриса