От движение литосферных плит
Р1 - периметр большего треугольника, Р - меньшего. Р1/Р = 7/4 = k = а1/а, где а1, а - стороны треугольников. Тогда Р1/Р = а1/а = 7/4, отсюда а1 = 7а/4. Из треугольника мкт, равностороннего, выражаем сторону через высоту. а = 2h/ √3. а = 8√3.
а1 = 7/4 а = 14√3. Тогда S1 = (14 √3)²√3 /4 = 15,75√3.
Дано: сторона а основания пирамиды равна 3 см,
боковое ребро L образует с основанием угол α = 45 градусов.
Сторона a основания правильной шестиугольной пирамиды равна радиусу R описанной около основания окружности и равна проекции OA бокового ребра L на основание.
Отсюда можем найти величину H высоты пирамиды.
Н = a*tg α = 3*1 = 3 см.
Площадь So основания равна:
So = 3√3a²/2 = 3√3*9/2 = 27√3/2.
Теперь находим искомый объём V пирамиды:
V = (1/3)SoH = (1/3)*(27√3/2)*3 = 27√3/2 ≈ <span><span>23,382686 см</span></span>³.