В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Следовательно CH ⊥ AB ⇒ Δ ACH - прямоугольный
По теореме Пифагора найдем AH
AH = √13²-12² = 5
Т.к. СН - медиана, то АН = НВ = 5 ⇒ АВ = 10
Площадь равнобедренного треугольника = * АВ * СН
S = * 10 * 12 = 60 cм²
0,13 м = 1,3 дм
0,73 м = 3,7 дм
Дана трапеция ABCD, у которой известны все стороны. Нужно найти высоту, чтобы вычислить площадь.
Проведем отрезок BE к нижнему основанию AD параллельно боковой стороне трапеции CD. Поскольку BE и CD параллельны и проведены между параллельными основаниями трапеции BC и DA, то BCDE - параллелограмм, и его противоположные стороны BE и CD равны. BE=CD.
Рассмотрите треугольник ABE. AE=AD-ED. Основания трапеции BC и AD известны, а в параллелограмме BCDE противолежащие стороны ED и BC равны. ED=BC, значит, AE=AD-BC.
Теперь найдем площадь треугольника ABE по формуле Герона (вложение 2).
p = 4,5
S = 2,4
Найдем высоту
ВО = 2S / AE
BO = 0,6
Высота треугольник является и высотой трапеции.
Sтрап = (2+6)*0,6 / 2 = 2,4 дм.
1) пусть АВС равнобедренный треугольник
АВ=ВС=15
АС=16
пусть ВК высота
центр описаной и вписаной окпужности О, лежит на высоте ВК
причем ВО-радиус описаной окружности, а ОК- вписаной
АК=1/2*АС=9 см
АВК-прямоугольный треугольник
АВ гипотенуза
из теоремы пифагора,
BK^2=AB^2-AK^2= 225-81=144=12^2
BK=12
, тогда ВО=х
ВО=АО=СО
ОК=12-х
расмотрим треугольник АОК, угол К=90 градусов
АО=х
ОК=12-х
АК=9
из теоремы пифагора
AO^2=AK^2+KO^2
x^2=(12-x)^2+9^2
x^2=144-24x+x^2+81
24x=225
x=225/24
радиус описаной окружности АО=9(9/24)
радиус вписаной окружности ОК=12-9(9/24)=12-225/24=(12*24-225)/24=
=(288-225)/24=63/24=2(15/24)
ответ
радиус описаной окружности 9(9/24)=9.375
радиус вписаной окружности 2(15/24)=2.625