находим диагональ ас= 10корней из 2 ,и ас=ав1=в1с.
из треуг. ав1с:
проводим высоту из в1 до ас- высота вм., ам=мс= 5корней из2,
по теореме пифагора мв1=200-50=150= 5корней из 6
и тепер угол между плоскостями равен укглу в1мв
тангенс равен 5корней из 2 поделить на 10=корень из 2 поделить на 2.
АВСД -ромб, МАВСД-пирамида, МК-апофема на СД, МК перпендикулярна СД, МК=10,4, АС=32, ВД=24, О-точка пересечения диагоналей , диагонали пересекаются в ромбе под углом 90 и делятся в точке пересечения пополам, АО=ОС=АС/2=32/2=16, ВО=ОД=ВД/2=24/2=12, треугольник СОД прямоугольный, СД=корень (ОС в квадрате+ОД в квадрате)=корень(256+144)=20, проводим высоту ОК на СД, ОД в квадрате=КД*СД,144=КД*20, КД=7,2, ОС в квадрате=СК*СД, 256=СК*20, СК=12,8, ОК в квадрате=КД*СК=7,2*12,8=92,16, треугольник ОМК, ОМ=корень(МК в квадрате-ОК в квадрате)=корень(108,16-92,16)=4 - расстояние от М до плоскости ромба
Есть формула площади через диагонали d1*d2*sinα/2