АВСА1В1С1-прямая призма
АВС-прямоугольный треугольник
АВ=20 см -гипотенуза, АС=16 см-катет
-------------------------------------------------
1.СВ=sqrt{AB^2-AC^2}=sqrt{20^2-16^2}=sqrt{144}=12(см)-катет
2.В треугольнике СС1В1 СВ1=sqrt{CC1^2+C1B1^2}= sqrt{5^2+12^2}=13(см)
3.Sполн.=2*Sосн+Sбок=2*АС*ВС/2 +( АС+АВ+СВ)*СС1=
=16*12+(16+20+12)*5=432 (см кв)
Ответ: 432 см кв
Прямоугольные треугольники DAH = DBH = DCH (сторона DH общая, углы равны по условию).
Следовательно AH = BH = CH и точка H является центром описанной окружности для ΔABC с радиусом R = AH = BH = CH
По теореме синусов:
Из прямоугольного ΔADH по теореме Пифагора:
Катет, лежащий напротив угла 30 градусов равен половине гипотенузы. Следовательно отрезок DO равен 6 см. Исходя из этого можно сказать, что диагональ BD = 12 см. А как вторую диагональ найти, я не знаю. прости
У нас есть прямоугольник ABCD, AB = CD =2см; BC = AD = 15см; АС - диагональ.
Возьмем в нем треугольник ABC - прямоугольный, AB и BC - катеты, АС - гипотенуза.
По теореме пифагора АС квадрат = АВ квадрат + ВС квадрат
АС квадрат = 4 + 225
АС квадрат = 229
АС =15,13 см
Ответ: 15,13 см
Да, если точка С лежит на этой прямой, но не входит в отрезок АВ