Ответ: 98
Объяснение:
Поверхность правильной четырехугольной усеченной пирамиды состоит из двух оснований-квадратов и четырех равных боковых граней- равнобедренных трапеций.
<em> Площадь трапеции равна произведению полусуммы оснований на высоту.</em>
Опустим из вершины А1 боковой грани АА1D1D высоту А1Н на АD. <em>Высота равнобедренной трапеции из тупого угла делит основание на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме. </em>
<em> </em>АН=(АD-А1D1):2=(5-3):2=1
Треугольник АА1Н - прямоугольный. По т.Пифагора А1Н=√(AA1²-AH²)=√(17-1)=4
S(осн)=S(ABCD)+S(A1B1C1D1)=5²+3²=34 (ед. площади)
S(бок)=4•S(AA1D1D)=4•0,5•(3+5)•4=64(ед. площади)
Ѕ(полн)=34+64=98 (ед. площади)
Ответ: угол BAD равен 60 градусов