Обратим внимание на то, что угол АВС=91°, следовательно АС - не диаметр и ∠САD не равен 90°.
Если из точки, лежащей вне круга, проведены секущая и касательная, то искомый угол γ = (β – α)/2 , где <span>γ - угол между касательной и секущей, </span> α - меньшая дуга окружности, заключенная между сторонами угла, β- большая.
На меньшую дугу опирается вписанный угол АСВ=72°, он равен половине дуги, ⇒ градусная мера дуги АВ вдвое больше и равна 144°
На большую дугу АС опирается вписанный угол, равный 91°, ⇒ градусная мера дуги АС вдвое больше и равна 182°.
Тогда ∠ADC =(182°-144°):2=19°
V=1/3SH
1) Основание пирамиды -- правильный треугольник, где √3 -- радиус вписанной в него окружности. 3√3 -- высота этого треугольника, сторона этого треугольника а=2√3*tg60=6, S=1/2*3√3*6=9√3
H=√(6²-(2√3)²)=2√6
V=1/3*9√3*2√6=18√2
Почти для любых двух окружностей можно провести две пересекающиеся касательные -> условие не верное.
<span>ВН=6 см. Т.к СН - высота в прямоугольном треугольнике(ВН=АН)</span>
А где ты "B" взял? И как мы должны решить эту задачу, если ты дал мало инфы. Ну есть у нас 2 паралельные прямые. И что? Нам нужно их соединить, или что?