Фигура - призма.
Рисунок ниже.
S=AB*AD*sin 60
AB=AE/cos 60
AD=AE+ED
S=AE*tg 60*(AE+ED)=4*9*sqrt 3=36*sqrt 3
В треугольнике с углами 45°, 45°, 90° стороны относятся как 1:1:√2
AB=AC√2 =12√2 (см)
Высота из прямого угла равна половине гипотенузы.
CD=AB/2 =6√2 (см)
-----------------------------------------------------------------------------------------------------------------
Сумма острых углов прямоугольного треугольника равна 90°.
90°-45°=45° (треугольник равнобедренный)
a, b - катеты, с - гипотенуза, a=b
a^2 +b^2 =c^2 <=> 2a^2 =c^2 <=> c=a√2
1. Проводим высоту, получаем прямоугольный треугольник. Так как угол равен 30 градусам, то катет лежащий напротив него равен 1\2 гипотенузы, то бишь 30:2=15. Высота равна 15.
S=a*ha.
S=15*52=780.
2. Та же ситуация. Напротив угла в 30 градусов, лежит катет равный половине гипотенузы. То есть высота равна 5.
S=1\2(12+27)*5=97,5.