1. ΔАВО₁: ∠О₁ = 90°, ∠А = 30°, ⇒ АВ = 2ВО₁ = 6 дм
Sabcd = АВ · ВО₂ = 6 · 8 = 48 дм²
2. Sabo = 1/2 AB·OO₁ = 1/2 OB·AO₂
AO₂ = AB·OO₁/OB = 14 · 18/21 = 12 см
3.Проведем вторую высоту СС₁. Тогда C₁D = 6,6 мм, а В₁С₁ = В₁D - С₁D = 4,8 мм. И ВС = В₁С₁ = 4,8 мм (ΔАВВ₁ = ΔDCC₁ по гипотенузе и острому углу, а ВВ₁С₁С - прямоугольник)
∠DCB = 135° ⇒ ∠CDA = ∠BAD = 180° - 135° = 45° (сумма углов, прилежащих к боковой стороне трапеции 180°)
⇒ΔАВВ₁ прямоугольный равнобедренный, тогда ВВ₁ = АВ₁ = 6,6 мм
Sabcd = (AD + BC)/2 · BB₁ = (18 + 4,8)/2 · 6,6 = 75,24 мм²
4. KLMO прямоугольная трапеция с основаниями KL = 14 cм и МО = 14-12 = 2 см, высотой LM = 14 см
Sklmo = (KL + MO)/2 · LM = 16/2 · 14 = 8 · 14 = 112 см²
5. Сторона ромба Р/4 = 100/4 = 25 см.
Рhpc = HP + PC + HC
HC = 64 - 25 - 25 = 14 см
Рpcl = PC + CL + PL
PL = 98 - 25 - 25 = 48 см
Spclh = HC · PL/2 = 14·48/2 = 336 см²
В основании правильной четырехугольной пирамиды квадрат, высота проецируется в точку пересечения его диагоналей.
Пусть К - середина МА.
1. Построение сечения.
В плоскости (АМС) соединим точки К и С. КС∩МО = Т.
В плоскости (DMB) через точку Т проведем прямую, параллельную BD. Точки L и H - точки пересечения этой прямой с ребрами MB и MD соответственно.
KLCH - искомое сечение (Точки С и К лежат в плоскости сечения, HL║BD, значит и сечение параллельно BD).
2.
BD⊥AC как диагонали квадрата
BD⊥MO, т.к. МО высота пирамиды, ⇒ BD⊥(AMC)
KC⊂(AMC) ⇒ BD⊥KC ⇒ HL⊥KC
В четырехугольнике KLCH диагонали перпендикулярны, поэтому его площадь можно найти как половину произведения диагоналей.
AC = 6√2 как диагональ квадрата.
Из ΔАМС по теореме косинусов
cosA = (AM² + AC² - MC²)/(2AM·AC)
Из ΔАКС по теореме косинусов
cosA = (AK² + AC² - KC²)/(2AK·AC)
Приравняем:
(AM² + AC² - MC²)/(2AM·AC) = (AK² + AC² - KC²)/(2AK·AC)
(144 + 72 - 144)/(2·12·6√2) = (36 + 72 - KC²)/(2·6·6√2)
72/2 = 108 - KC²
KC² = 72
KC = 6√2
В ΔАМС точка Т - точка пересечения медиан. Значит,
МТ:ТО = 2:1, и МТ:МО = 2:3
ΔHML подобен ΔDMB по двум углам (угол при вершине М общий, ∠MHL = ∠MDB как соответственные при пересечении HL║BD секущей MD) ⇒
HL:DB = МТ:МО = 2:3
HL = BD·2/3 = 6√2 · 2/3 = 4√2
Sklch = KC·HL/2 = 6√2·4√2/2 = 24
Построение. Проведем высоту основания ВН. В правильном треугольнике это и медиана и биссектриса. Через центр основания J проведем прямую, параллельную стороне АС. Получим точки K и L на пересечении этой прямой с сторонами АВ и ВС соответственно. Через центр сферы О проведем прямую, параллельную стороне АС. Восстановим перпендикуляры из точек К и L и на пересечении этих перпендикуляров с проведенной прямой получим на боковых гранях призмы точки M и N. Проведя через точки А и N, С и М получим линии пересечения секущей плоскости и боковых граней призмы. Сечение призмы - равнобедренная трапеция.
Центр основания призмы J делит высоту основания в отношении 2:1, считая от вершины В (свойство медианы). Высота правильного треугольника ВН = (√3/2)*а (формула), отрезок НJ=(1/3)*ВН = (√3/6)*а. Из треугольника СОН найдем отрезок ОН по Пифагору:
ОН = √(OC²-HC²) = √(R²-a²/4) = (√(4R²-a²))/2.
Тогда OJ = √(OH²-HJ²) = √((3R²-a²)/3). Высота призмы равна
2√((3R²-a²)/3) (так как О - центр сферы).
Треугольники HOJ и HQG подобны с k=OJ/QG =1/2. => NM - средняя линия трапеции ASTC. NM = KL = (2/3)*a (из подобия треугольников АВС и KBL). Тогда ST=(1/3)*a.
Площадь сечения = площадь трапеции ASTC.
Sastc = (AC+ST)*HQ/2 = 2a√(4R²-a²)/3.
Ответ: Sastc = 2a√(4R²-a²)/3.
Для проверки: есть следствие из теоремы об описанной призме: радиус сферы, описанной около правильной треугольной призмы с высотой h и ребром основания a равен R=√(a²/3+h²/4). Подставив найденную высоту призмы, получим R=R.
1)52-14=38(см)
2)38:2=19(см)
Ответ:боковая сторона треугольника равна 19 см.
1. 2х-5у+20=0
С осью Ох => y=0 => 2x-5·0+20=0
2x=-20
x=-10
Получили точку <u>(-10; 0)</u>.
С осью Оy => x=0 => 2·0-5y+20=0
-5y=-20
y=4
Получили точку <u>(0; 4)</u>.
2. x²+6x+y²=0
(x²+6x+9)+y²=0+9
(x+3)²+y²=3²
Окружность радиуса 3 с центром (-3; 0).
Если АВ - диаметр, то АВ=6
Значит, АВ является диаметром.
3. Чертежи во вложении.