Уравнение окружности (х-хо)²+(у-уо)²=R²
точка (хо; уо) - центр окружности. По условию хо=0. х²+(у-уо)²=R²
На ней лежат точки (4; 0) и (0; 6)
У всех точек на оси ОХ у=0
У всех точек на оси ОУ х=0
Подставим координаты точек в уравнение окружности.
{16+(0-уо)²=R²
{0+(6-yo)²=R²
{16+yo²=R²
{ 36-12yo+yo²=R² вычтем
16-36+12уо=0
12уо=20; уо=20/12=5/3 центр окружности (0; 5/3)
х²+(у-5/3)²=R² подставим в уравнение точку (4;0)
16+25/9=R²; R²=16*9/9 + 25/9=(144+25)/9=169/9=(13/3)²; R=13/3
Ответ: х²+(у-5/3)²=(13/3)².
M (сред. линия) вычисляется по формуле:
(a+b)/2
Здесь простое уравнение с 1 переменной. Составляем:
Пусть x- основание тогда
(x+(x+4))/2=7
(x+x+4)/2=7
(2x+4)/2=7
Домножаем 7 на 2
(2x+4)/2=14
Знаменатель исчезает
2x+4=14
2x=10
x=5. (Меньшее основание)
x2=5+4=9 см.
Ответ: 5 и 9 см
Будем считать какую-нибудь боковую грань этой пирамиды основанием. Эта грань - равнобедренный прямоугольный треугольник c катетом а, и его площадь равна a²/2. Т.к. ребра перпендикулярны, то не принадлежащее этой грани ребро, перпендикулярное катетам нового основания, является высотой пирамиды. Т.е. ее объем равен (1/3)·a²/2·a=a³/6.