Равнобедренный. У равнобедренного треугольника высота является биссектрисой и медианой. Вроде так, но лучше проверь)
Пусть R — радиус описанной вокруг правильного многоугольника окружности, тогда радиус вписанной окружности равен r=R*cos(180/n)
Дано: окружность R= OC =10 см
хорда BC = 16 см
OA = √37 см
Найти: BA -? и AC -?
ΔOBC образован хордой и двумя радиусами ⇒ равнобедренный
OK - высота и медиана ⇒ BK = KC = 16/2 = 8 см
ΔOKC - прямоугольный. Теорема Пифагора
OK² = R² - KC² = 10² - 8² = 36
ΔOKA - прямоугольный. Теорема Пифагора
AK² = OA² - OK² = (√37)² - 36 = 1; AK = 1
AC = AK + KC = 1 + 8 = 9
AB = BC - AC = 16 - 9 = 7
Ответ: точка А делит хорду на отрезки 9 см и 7 см
-3-3=-6
6-(-4)=10
мд{-6;10}
длина мд √((-6)² + 10²)= √(36+100)=√136