2м11см=211см
211*2=422(см)
422см=4м22см
АВ = 6 см, АС = 8 см, ВС = 10 см.
Заметим, что сумма квадратов двух сторон равна квадрату третьей стороне, т.е. 36 + 64 = 100, значит тр-ник АВС прямоугольный, ВС - гипотенуза.
Мы имеем пирамиду, боковые грани которой - равнобедренные тр-ки с боковыми сторонами МВ = МА = МС = 15 см.
МО - расстояние от точки М до плоскости тр-ка, т.е. перпендикуляр.
Прямоугольные тр-ки МОА = МОВ = МОС по гипотенузе (АМ = ВМ = СМ) и катету ОМ (он у них общий). Из равности этих тр-ков следует равность сторон ОА = ОВ = ОС. Значит О - центр окружности, описанной около тр-ка АВС. Тогда гипотенуза ВС является диаметром окружности, значит радиусы ОА = ОВ = ОС = 10 : 2 = 5 (см) как половина диаметра.
Из любого прямоугольного тр-ка с вершиной в точке М вычислим по теореме пифагора расстояние от точки М до плоскости тр-ка АВС:
МО = √(225 - 25) = √200 = 10√2 (см)
Ответ: 10√2 см
MABCD -правильная пирамида
О-точка пересечения диагоналей квадрата ABCD, основания пирамиды
высота пирамиды, МО=12
сторона основания, а=8
МК-апофема
угол МКО - линейный угол двугранного угла между боковой гранью и плоскостью основания
рассмотрим прямоугольный ΔМОК: МО=12, ОК=4 (а/2)
tg<MKO=MO/MK
tg<MKO=12/4
<u>tg<MKO=3</u>
Площадь треугольника s=h*a/2, h=2s/a s=√p(p-a)(p-b)(p-c)
p=(a+b+c)/2=(14+13+15)/2=21 s=√21(21-14)(21-13)(21-15)=84
h=84/14=6