Дано:
ABCD - ромб
AC, BD - диагонали
AC пересекает BD=O
AC=12
BD=16
Найти: AB
Решение:
1) AO=OC=6 (по свойству ромба)
2)BO=OD=8 (по свойству ромба)
3) Рассмотрим треугольник ABO (угол AOB=90 градусов)
AO=6, BO=8=> AB=10 (Пифагорова тройка)
По свойствам касательной к окружности АС=ВС , АО--- биссектриса угла А ,высота и медиана , т. е ВК=КС=4см и АК перпендикулярна ВС. ΔАКС(угол К=90 )=ΔАКВ(угол К=90 ) .
АС перпендикулярно ОС ( ОС=R=ОВ) --по свойству касательной к окружности.. Из ΔАКС ( угол К=90 град ) найдём АС по теореме Пифагора): АС²=АК²+КС²
АС²=4²+4²
АС=√32=4√2
Прямоугольные треугольники подобны , составим подобие и найдём радиус окружности : ΔАВО подобен ΔАКС:
АС/ОС=АК/КС
4√2/R=4|4
R=4√2
Ответ : 4√2
1) найдем координаты вектора АВ:
АВ={-5;3;1}=CD по условию;
2) координаты точки D(а;в;с). Тогда,
<span>а-1=-5, в-1=3, с-4=1. Значит: D(-4;4;5).</span>
Проводим высоту ВН к основанию AD. тогда ABH=30. AH=(14-6)/2=4. AB=2AH(по теореме)=4*2=8. В общем то это и есть ответ