Решение: а) тк окружность вписана в квадрат, то её радиус равен половине стороны квадрата: r = а:2=корень из S:2, тогда С = 2 пr= 2 х п(пи) х r = п х корень из S; б) длина дуги= длина окружности: 4 (тк 4 точки касания); в) S= площадь квадрата минус площадь круга и разделить на 4 = (S - пr2 (в квадрате)): 4= (S-п корень из S):4
а) Условие перпендикулярности векторов: векторы "а" и "b" являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю, то есть когда Хa*Хb + Ya*Yb = 0, где X и Y - соответствующие координаты векторов. Координаты векторов равны разности соответствующих координат точек его конца и начала. Тогда вектор ЕК{1-(-3);4-(-1)} или ЕК{4;5}. Вектор РМ{2-(-4);1-(-a)} или РМ{6;1+a}. Тогда условие перпендикулярности векторов ЕК и РМ: 6*4+(1+а)*5 = 0. 24+5+5а=0. => а = - 5,8.
б) Угол между векторами определяется по формуле: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. ЕР{-4-(-3);5,8-(-1)) или ЕР{-1;6,8} (координату точки Yр= 5,8(-а) нашли в п.а). Координаты вектора ЕК{1-(-3);4-(-1)} или КЕ{4;5}. Тогда косинус угла между этими векторами будет равен:
cosα=(-4+34)/[√(1+46,24)*√(16+25)] = 30/44 ≈ 0,682. Угол между векторами по таблице равен 47°.
Ответ: угол между векторами РЕ и КЕ равен ~47°.
возьми за х меньшее основание. По формуле средней линии
14 = (х + (х + 20)) /2
28 = 2х + 20
2х = 8
х = 4
Основания 4 и 24
1
Площадь треугольника равна произведению половины основания треугольника<span> на его высоту:
</span>
<span>
2
Соседние стороны и диагональ прямоугольника образуют прямоугольный треугольник. По теореме Пифагора диагональ (d) равна:
</span>
<span>
3
Высота равнобедренного треугольника, проведенная к основанию, является также медианой, значит делит основание пополам.
Половина основания = 12/2 = 6 см.
В равнобедренном треугольнике высота, боковая сторона и половина основания образуют прямоугольный треугольник, в котором боковая сторона (а) по теореме Пифагора равна:
</span>
cм.
<span>
4 (рисунок в приложении)
Пусть дана трапеция АВСЕ
АВ = СЕ = 5 см
АЕ = 10 см
ВС = 4 см
Найти: S(ABCE)
Проведем высоты ВН и СК. Высоты трапеции перпендикулярны основаниям, отсюда:
НК = ВС = 4 см
АН = (10-4)/2 = 3 см
Найдем высоту ВН из </span>ΔАВН по теореме Пифагора:
см
Найдем площадь трапеции:
см²
5
Пусть СD = x, тогда АС = 3х. Из ΔАСD по теореме Пифагора:
(3x)² - x² = 16²
9x² - x² = 256
8x² = 256
x² = 256 : 8
x² = 32
x = √32 = 4√2
CD = 4√2
AC = 3 * 4√2 = 12√2
Найдем высоту DН треугольника АСD: