<span>дано точки М(3,-2.1) і N(5.2,-3) . знайдіть координати цих точок</span>
В первом - не понятно условия
№2
Треугольник АВС , А=90 град, АМ биссектриса углаА, ВН - биссектриса угла В, О - точка пересечения
угол АОВ=132, угол ВАО = 90/2=45, угол АВО = 180-132-45=3, угол В =6
угол С= 90-6=84
1. Областью определения этой функции является любое действительное число, поскольку она задана в виде многочлена.
2. Находим производную функции. Она равна (5икс в четвертой степени ) минус (3х²) -4
3. Приравняем к нулю производную, решив уравнение эф штрих равно нулю, т.е. найдем критические точки этой функции. Напомню. критические точки - это внутренние точки области определения, в которых производная равна нулю или не существует. Производная существует везде, остается проверить, в каких точках она обращается в нуль. Примем х²=у- число, большее нуля, если оно равно нулю, то получаем -4=0, а это не так. Перейдем к уравнению относительно у. получим у²-3у-4=0, по теореме Виета у₁=4, у₂= -1- сразу отбрасываем, остается у₁=4, т.е. х²=4, это уравнение дает два корня х₁=2 и х₂ =-2, оба не попадают на отрезок [-1;1 ], заданный по условию. Остается проверить только концы отрезка, т.е. найти значения функции в точках -1 и 1.
у(-1)= -0,2-(-1)-4*(-1)+1= 5,8, у(1)=0,2-1-4+1=-3,8. Из этих значений и выбираем наибольшее и наименьшее значения функции на указанном отрезке . Наибольшее значение равно 5,8; наименьшее равно -3,8.
Пусть треугольник ABC биссектриса BK делит сторону AC на AK=m KC=n тогда AB/BC=m/n BC=nAB/m и AB=BC*m/n P=nAB/m+BC*m/n+m+n=m²(BC+m)+n²(AB+m)
.......................................................