Дано:
ΔABC - равнобедренный
∠A=120°
BA=4cm
Найти: S-?
Решение: S=sin(∠A)2BA
sin(∠A)=sin(120°)=sin(60°)=
AB=5, OC=8 коэффицент подобия равен 2.
так как. сторона ВД относится к стороне ОВ, как 6 к 3. следует, что коэфыиуиент подобия будет 2, так как разность сторон в 2 раза. следовательно АВ=5 (1/2СД) и ОС=8(2АО)
∠ACB - вписанный и опирается на дугу AB. Т.к. AB - диаметр окружности, то ∪AB=180° и ∠ACB=180/2=90° ⇒ ∠ACT=90° как смежный угол.∪BC=∪AB-∪AC=180-80=100°. ∠BAC вписанный и опирается на дугу BC ⇒ ∠BAC=100/2=50°
По свойству касательной к окружности ∠BAT=90° ⇒ ∠CAT=90-50=40°∠ATC=180-(40+90)=50°
<span>АВСД-трапеция
АД-?
Из вершины С проводим перпендикуляр СЕ
Решение
АВ=ВС=10(за условием)
АВ=СЕ=10(по свойству)
</span>∠Е=90° ⇒ ∠Д=∠С=45°⇒ΔСЕД-прямоугольный(∠Е=90°)
СЕ=ЕД=10 ⇒ ΔСЕД-<span>равнобедренный
</span>АД=АЕ+ЕД(при условии)
АД=10+10=20 см
АД=20 см