х см - одна сторона и х см - другая, т.к. треугольник равнобедренный.
х+17 см - гипотенуза
х+х+х+17=77 -периметр
3х=77-17
3х=60
х=20 см - две стороны по 20см
20+17=37см- третья сторона
Могу дать решение на задачу 3:
Тут всё достаточно просто, вот смотри:
По условию задачи, диагональ трапеции разбила её на два треугольника, у которых средние линии равны 5 см и 9 см. Это понятно.
Дальше:
Поскольку средняя линия равна половине основания, то, соответственно, основания этих треугольников равны, поэтому приведу следующие вычисления:
5*2=10 см.
9*2=18 см.
Итак, основания этих треугольников являются основаниями самой трапеции, а это и значит, что основания трапеции будут являться<span> 10 см. и 18 см. </span>
.............................
Проверим, подобны ли треугольники MNC и ABC:
NC/BC=9/12=3/4
MC/AC=12/16=3/4
Угол
С у этих треугольников общий. Значит, по первому признаку подобия
треугольников (который гласит, что если угол одного треугольника равен
углу другого треугольника и стороны, образующие этот угол, одного
треугольника пропорциональны сторонам, образующим этот угол, другого
треугольника, то они подобны) MNC и ABC подобны.
А в подобных
треугольниках соответственные углы равны. Т.е., к примеру, угол CNM=углу
CBA, следовательно, по признаку параллельности прямых MN||AB
Проведем высоту из вершины. Она разделит треугольник на два прямоугольных треугольника с катетом 16/2=8 и гипотенузой 17. По теореме Пифагора, второй катет - высота исходного треугольника - равен sqrt(289-64)=sqrt(225)=15. Тогда площадь исходного треугольника равна 1/2*16*15=120. Радиус вписанной окружности найдем по формуле r=S/p=2S/P,здесь p и P - полупериметр и периметр соответственно. S=120, P=17+17+16=50. Тогда r=120/50=12/5=2.4