Формула периметра квадрата:
см
Сторона равна 4.2 см
Пусть высота равна х см; две части гипотенузы (с) пусть равны к (см) и n (cм) c=k+n;
высота, проведённая к гипотенузе, делит треугольник на два прямоугольных треугольника;
запишем площади этих треугольников, как половина произведения катетов;
тогда:
8√3=х*к/2;
24√3=х*n/2;
х*к=16√3;
х*n=48√3;
разделим первое уравнение на второе, получим:
k/n=16/48;
k/n + 1=16/48 + 1;
(k+n)/n=(16+48)/48=64/48;
значит: k+n=64;
k+n=c=64;
ответ: 64
угол BKA=углу KAD(накрест лежащие или разносторонние)=углу BAK, значит треуг.ABK равнобедр. и тогда AB=BK=6
<span><em>Вершины треугольника АВС лежат на окружности с центром О, угол АОВ=80º, дуга АВ </em></span><em>относится к дуге</em><span><span><em> ВС так, как относится</em></span><span><span><span><em> 2 к </em><span><em>3.</em>
</span><em> </em></span><span><em><u>Найти углы треугольника АВС</u></em>
</span></span>В подобных задачах обычно дается отношение </span></span>◡АС: ◡ВС, здесь дано отношение известной дуги AB к неизвестной ВС, причем о второй неизвестной ◡АС ничего не сказано.
<u>Решение.</u>
Центральный ∠АОВ=80°. ⇒<span>◡АВ, на которую он опирается, равна 80</span>°.
Тогда
◡АС + ◡ВС =360°-80°=280°⇒
◡ВС=280° - <span>◡АС
</span>Из данного в условии отношения следует:
80°:(280°- <span>◡АС=2:3
</span>240°=560°- 2◡АС
2◡АС=320°
◡АС=160°
Вписанный ∠АВС опирается на эту дугу и равен 160°:2=<span>80°
</span><span>◡ВС=280</span>°<span>-160</span>°<span>-120</span>°
Вписанный ∠ВАС опирается на неё и равен 120°:2=60°
Вписанный ∠АСВ опирается на дугу АВ и равен 80°:2=40°
Сумма углов ∆ АВС=80°+60°+40°=180°
АВ:ВС=80°:120°=2:3