Высота=6 см
Сторона, к которой проведена высота= 18 см
вторая сторона =7см
Пирамида правильная, значит ее вершина проецируется в центр основания - точку О - центр описанной и вписанной окружностей.
SO=√13 (высота пирамиды - дана).
АВ=ВС=АС =6 (стороны основания - правильного треугольника - дано).
АН=(√3/2)*АВ (формула высоты правильного треугольника).
АН - высота, биссектриса и медиана =>
ОН=(1/3)*АН (свойство медианы).
Тогда
АН=(√3/2)*6=3√3.
ОН=(1/3)*3√3=√3.
SH=√(SO²-OH²)=√(13-3)=√10.
Sб=(1/2)*Р*SH =(1/2)*18*√10 (произведение полупериметра основания на высоту боковой грани (апофему).
Sб=9√10.
Построение:
На прямой "а" возьмем произвольную точку А и из нее как из центра проведем окружность произвольного радиуса. Обозначим точку пересечения этой окружности с прямой "а" через "b" и "с" и из них, как из центров проведем окружности радиуса R=bс. Соединив точку пересечения "d" и "е" этих окружностей получим прямую, проходящую через точку А перпендикулярно прямой "а".
Доказательство:
Хорда de является общей хордой пересекающихся окружностей, следовательно, она перпендикулярна прямой, соединяющей центры этих окружностей (свойство). Эта хорда проходит через точку А на прямой "а", поскольку она равноудалена от точек "b" и "с", а точка А делит отрезок bс пополам по построению.
CEM, EMC, MCE - обозначения треугольника
Сторона EM лежит против угла C
Угол E лежит против стороны CM
Углы, прилежащие к стороне EC – углы E и C
Угол между сторонами EC и EM – E
(измерить не могу, т.к. для этого мне нужен рисунок в учебнике)