Сначала найди АВ, СВ, по формуле Х=(х2-х1) У=(у2-у1) Z=(z2-z1) потом умнож где двойки и вычисли.
<span>Площадь ромба равна половине произведения его диагоналей.Построим ромб ABCD, диагонали AC и BD, центр O.S = (BD * AC) / 2Надо найти BD и AC (диагонали ромба)Из условия, о том, что диагонали соотносятся 3:4, обозначаем их как 3x и 4x.Тогда ВО=2x, АО=1,5x.Треугольник ABO, теорема Пифагора: АВ^2=ВО^2+АО^220^2 = (2x)^2 + (1,5x)^2400 = 4x^2 + 2,25x^2400 = 6,25x^2x^2 = 400 / 6,25x^2 = 64x = 8BD = 4x = 32AC = 3x = 24S = (32 * 24) / 2S = 384 см</span>
Применены: формула высоты правильного треугольника, теорема Пифагора
треугольник АВС равнобедренный, АС=ВС, АВ=6, уголА=уголВ, cosА=корень3/2=cosВ, sinB=корень(1-cosВ в квадрате)=корень(1-3/4)=1/2 , треугольник АНВ прямоугольный, АН=АВ*sinB=6*1/2=3
Усеченый конус АВСД, О -центр нижнего основания, О1 центр верхнего основания, АО=ВО=радиус нижнего основания=корень(площадь/пи)=корень(пи/пи)=1, АВ-диаметр нижнего основания=2*1=2, ВС-диаметр верхнего основания, ВО1=СО1=радиус верхнего основания=корень(площадь/пи)=корень(16пи/пи)=4, ВС=2*4=8, АВ=СД=5-образующая, сечение-равнобокая трапеция АВСД, АВ=СД, уголА=уголД, проводим высоты ВН и СК на АД, ВН=СК, треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК прямоугольник ВС=НК=2, АН=КД=(АД-НК)/2=(8-2)/2=3, треугольник АВН прямоугольный, ВН -высота трапеции=корень(АВ в квадрате-АН в квадрате)=корень((25-9)=4, площадь АВСД (сечения)=(АД+ВС)*ВН/2=(2+8)*4/2=20