A - острый угол, BC - меньшее основание
BH - высота, BH=BC=46
BCDH - квадрат (три прямых угла, смежные стороны равны)
BC=CD=HD=46
sinA=BH/AB => 46/AB =23/265 <=> AB=265*2=530
AH=√(AB^2-BH^2) =√(530^2-46^2)=√(484*576)=22*24=528
P(ABCD)= AB+AH+HD+BC+CD =530+528+46*3 =1196
Дано: Δ АВС - прямоугольный, ∠С=90°, ∠А=60°, СД - высота, АВ=18.
Найти ВД.
Решение: ∠СВД=30°, тогда АС=0,5АВ.
АС=0,5*18=9.
Δ АДС - прямоугольный. ∠А=60°, тогда ∠АСД=30°, АД=0,5АС=0,5*9=4,5.
ВД=АВ-АД=18-4,5=13,5 (ед.)
Чем дальше в отрицательную сторону от нуля, тем число меньше. Ответ: b
Ответ:
Нет решений. Так как y=c^2-график парабола в 1-й и 2-й координатных четвертях. А y+2=0-график прямая проходящая через 3-ю и 4-ю координатную четверть. Так как графики не пересекаются значит решений нет.
Объяснение: