Условие задачи неполное.
Дано: AB = BD = BC,
BE║DC.
Доказать: DC ⊥ AC
.
Решение:
∠1 = ∠2 как соответственные при пересечении параллельных прямых ВЕ и DC секущей AD,
∠3 = ∠4 как накрест лежащие при пересечении параллельных прямых ВЕ и DC секущей ВС.
∠1 = ∠3 как углы при основании равнобедренного треугольника DBC, значит и
∠2 = ∠4.
Тогда ВЕ - биссектриса треугольника АВС, а, так как ΔАВС равнобедренный, то ВЕ и высота, т.е.
ВЕ⊥АС, а так как ВЕ║DC, то и DC⊥AC.
ΔАВС - прямоугольный (∟B = 90 °).
ΔА 1 В 1 С 1 - прямоугольный (∟B 1 = 90 °).
АВ = А 1 В 1 . BN - высота (BN ┴ АС).
В 1 N 1 - высота ( В 1 N 1 ┴ A 1 C 1 ).
BN - B 1 N 1 . Доказать: ΔАВС = Δ А 1 В 1 С 1 .
Доведения:
По условию: BN - высота (BN ┴ АС), тогда ∟BNC = ∟BNA = 90 °.
Аналогично B 1 N 1 - высота, ∟B 1 N 1 C 1 = ∟B 1 N 1 A 1 = 90 °.
Рассмотрим ΔBNA и ΔB 1 N 1 A 1 .
По условию BN = B 1 N 1 и BA = В 1 А 1 ; ∟BNA = ∟B 1 N 1 A 1 = 90 °.
По признаку pавенства прямоугольных треугольников имеем: ΔBNA = Δ B 1 N 1 A 1 .
Отсюда ∟A = ∟A 1 .
Рассмотрим ΔАВС и Δ А 1 В 1 С 1 .
∟A = ∟A 1 ; ∟ABC = ∟ А 1 В 1 С 1 = 90 °. AB = A 1 B 1 .
По признаку pавенства прямоугольных треугольников имеем: ΔАВС = Δ А 1 В 1 С 1
Сумма всех углов в треугольнике =180 - 90 =90 - сумма двух других углов (острых) в прямоугольном треугольнике
90 - 70 =20 - третий угол
180-20 =160 - внешний угол
<em>Прямая АВ пересекает плоскость </em>α<em> под углом 30 градусов. АА1 - перпендикуляр, а ВА1 - проекция АВ на плоскости а.
<u>Найдите: </u>
длину наклонной АВ и длину перпендикуляра АА1, если ВА1=15 см.
</em>-------
АВА1 - прямоугольный треугольник.
АВ=ВА1/sin 60º
АВ=15:{(√3):2}=10√3 см
<span>АА1=АВ*sin 30º=10√3)*1/2=5√3 см
</span>
Не уверена,что решила тем способом,что надо(может здесь дифференцирование),но ПОКА мои знания позволяют сделать следующее: