1) Медианы в точке пересечения делятся в отношение 2:1, считая от вершины.
Расстояние от точки пересечения медиан до вершины равно 12 см, это составляет 2/3 всей медианы. Значит, медиана, проведенная к основанию равнобедренного треугольника ( а она и высота) равна 18 см. ( см. рисунок)
Половина основания 8.
По теореме Пифагора часть медианы проведенной к боковой стороне равна 10. Это 2/3 всей медианы. Вся медиана равна 15.
2) Через середину боковой стороны проведем перпендикуляр длиной 9, этот перпендикуляр параллелен высоте равнобедренного треугольника и является средней линией прямоугольного треугольника. Значит высота 18 см. Точка пересечения медиан делит медиану ( а значит и высоту), проведенную к основанию в отношении 2:1. Значит искомое расстояние расстояние равно 12 см.
S=1/2* основание * высота
1/2*29*21=304,5
Ответ:
Угол 3 равен 4, угол 1 равен 2
Объяснение: