Ответ:
Объяснение:
∠3=∠1=33°, как соответственные при секущей CD
∠1=∠2=33°, как накрест лежащие при секущей AC
∠4 и ∠3 - односторонние при секущей BD
∠4+∠3=180°
∠4=180-∠3
∠4=180-33=147°
Ответ:АВСД - основание
АВСДА1В1С1Д1 - призма
АС1=а
<АС1Д=30
а) АС=а*sin30=a/2
АД=АС/√2=а/(2√2) -сторона основания призмы
б) 90-30=60 -угол между диагональю призмы и плоскостью основания
в) СС1=а*cos30=а√3/2
Sбок=CC1*Pосн=СС1*4*АД=а√3/2(4*a/(2√2))=а²√(3/2) -площадь боковой поверхности призмы
г) Sасс₁а₁=СС1*АС=а√3/2*(a/2)=а²√3/4 -площадь сечения призмы плоскостью
Объяснение:
Из т. A опустим перпендикуляр на прямую DE (см. прикрепленный рисунок). Пусть AH - этот перпендикуляр, (длину которого и требуется найти в задаче). Тогда AH⊥DE. Проведем отрезок CH в плоскости CDE.
Т.к. по условию AC⊥CDE, то AH - наклонная, а AC - перпендикуляр (к плоскости CDE). И AH⊥DE (по построению), тогда по теореме обратной теореме "о трёх перпендикулярах", получаем, что DE⊥CH.
Таким образом CH - это высота прямоугольного равнобедренного треугольника CDE. Найдем CH. Для этого найдем DE по т. Пифагора:
DE² = CE² + CD² = (12√2)² + (12√2)² = 2*12² + 2*12² = 4*12²,
DE = √(4*12²) = 2*12.
Т.к. треугольник CDE - равнобедренный, то его высота CH является и медианой. Поэтому DH = EH = DE/2 = 2*12/2 = 12.
По т. Пифагора для ΔCDH.
CH² = CD² - DH² = (12√2)² - 12² = 2*12² - 12² = 12²,
CH = √(12²) = 12.
Т.к. AC⊥пл.CDE, то AC⊥CH, и ΔACH прямоугольный, ∠ACH = 90°.
По т. Пифагора для ΔACH:
AH² = CH² + AC² = 12² + 35² = 144 + 1225 = 1369,
AH = √(1369) = 37.
Ответ. 37 дм.
Пусть а - ребро двугранного угла, А - точка в одной грани.
Проведем АН - перпендикуляр к другой грани угла и АК⊥а.
КН - проекция наклонной АК на плоскость α. Так как АК⊥а, то и КН⊥а по теореме, обратной теореме о трех перпендикулярах.
∠АКН = 45° - линейный угол данного двугранного угла.
ΔАКН: ∠АНК = 90°, ∠АКН = 45°, АН = 5√2 см.
sin∠AKH = AH / AK
AK = AH / sin∠AKH = 5√2 / (√2/2) = 5 см