Плоскости α и β пересекаются по линии m.
Точки А и В лежат в одной плоскости (α). Их можно соединить и продолжить до пересечения с m в точке D.
BD – <em><u>линия пересечения</u> плоскости АВС с плоскостью α</em>.
Точки D и С лежат в одной плоскости (β). Соединив их, получим СD –<em><u>линию пересечения</u> плоскости АВС с плоскостью β.</em>
Точки А, В, С, D лежат в плоскости АВСD.
BD и CD – <em>линии пересечения плоскости АВС с плоскостями α и </em>β<em>.
---------
Примечание: К вопросу с задачами, в которых есть упоминание о рисунке, не следует забывать этот рисунок прикладывать. </em>
Прости, нет значка вектора, пишу простыми буквами, не забудь подписать стрелочки)
AK=AD+DK, DK=0,25DC=0,25AB => AK=a+0,25b;
KB=KC+CB, KC=0,75DC=0,75AB, CB=DA=-AD => KB=0,75b-a
Если два "египетских" треугольника со сторонами (6,8,10) приставить друг к другу катетами 6, то как раз получится такой треугольник.
То есть высота к основанию 6, площадь 48, ну и ПОЛУпериметр 18.
То есть радиус вписанной окружности равен 48/18 = 8/3;
Радиус описанной окружности можно найти кучей способов, но технически проще всего из теоремы синусов 2*R*sin(α) = 10; где α - угол при основании (напротив боковой стороны 10). Sin(α) = 3/5; R = 25/3;
Расстояние от центра описанной окружности до основания равно 25/3 - 6 = 7/3; и лежит он снаружи треугольника, то есть между центрами вписанной и описанной окружности 7/3 + 8/3 = 5;
<span>Осевое сечение конуса – прямоугольный, равнобедренный треугольник,
с углами 90°, 45°, 45°</span>
Гипотенуза которого, является диаметром основания цилиндра
и равна х,
тогда
<span>r=0,5x</span>
Высота, проведенная к основанию, является медианой и биссектрисой
и разбивает осевое сечение на два равных треугольника и равна
<span>H=х√3/2</span>
Гипотенуза треугольника, она же образующая
<span>
L=r/cos45<span>°=r</span>√2=x*√2/2</span><span>
Sб=<span> πRl = π*0,5x*</span> x*√2/2 = π* x²*√2/4
</span><span><span>
Sпп=</span> Sб+Sосн= π* x²*√2/4
+ x²/2= π* x²*(√2+2)/4</span><span>
<span><span><u>Sпп</u>/</span><span> S</span>б=(
π* x²*(√2+2)/4)/( π* x²*√2/4)=1+ √2</span><span></span></span>
Найдём угол acb 1)180-123=57
Угол cab=acb=57 по свойству равнобедреннго треугольника
ABC=180-(57+57)=66