В треугольнике АВС по теореме косинусов находим углы А и С:
cos A = (b²+c²-a²) / (2bc) = (15²+8²-13²) / (2*15*8) = 120 / 240 = 1 / 2.
A = arc cos (1/2) = 60°.
cos C = (a²+b²-c²) / (2ab) = (13²+15²-8²) / (2*13*15) = 330 / 390 = 11 / 13
C = arc cos (11/13) = 32,20423°.
Теперь определяем длину отрезка ВД = √(5²+8²-2*5*8*(1/2)) = √(25+64-40) = 7.
В треугольниках <span>ABD и CBD находим радиусы вписанных окружностей по формуле: r = </span>√((p-a)(p-b)(p-c) / p).
r₁ = √((10-5)(10-8)(10-7) / 10) = √3 = 1,732051,
r₂ = √((15-7)(15-10)(15-13) / 15) = √(80/15) = √(16/3) = 4 / √3 = 2,309401.
Находим тангенс половинного углa С через косинус по формуле:
tg α/2 =√(1-cos α) / (1+cos α).
tg A/2 = tg 60/2 = tg 30 = 1/√3
tg C/2 = √((1-(11/13)) / (1+(11/13))) = √(2/24) = √(1/12) = 1 / 2√3.
Находим отрезки АК и СL:
AK = r₁ / tg A/2 = √3 / (1/√3) = 3.
CL = r₂ / tg C/2 = 4*2√3 / √3 = 8
Отсюда искомый отрезок KL = 15-3-8 = 4.
Из условия задачи вытекает только один вариант: если соотношение отрезков AD и DC считать слева направо.
Второй вариант может быть при расположении точки D со стороны ула С.
В) центральный угол в два раза больше вписанного, опирающегося на ту же дугу
Пусть О-центр окружности, тогда АОВ=2АМВ=60
треугольник АОВ- равнобедренный, боковые стороны это радиусы,
углы при основании равны 60, значит АОВ - равносторонний треугольник, значит АВ=6
г)центральный угол в два раза больше вписанного, опирающегося на ту же дугу
пусть вписанный угол это х
тогда центральный х+27
составим уравнение (х+27)/27=2
х=27
углы равны 27 и 54
Четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.
Ответ:
28 квадратных сантиметров
Объяснение:
S=1/2*AB*BC*sinABC=
Раз осевое сечение цилиндра - квадрат со стороной 12 см, а в этот цилиндр вписана правильная четырехугольная призма, то диагональным сечением призмы будет также квадрат со стороной 12 см
основание призмы - квадрат (призма правильная)
обозначим сторону основания призмы через а, тогда а = 12 * cos45 = 12 * √2/2 = 6√2
площадь призмы S = (6√2)² * 2 + 6√2*12*4 = 144(1+ 2√2) cm²
диагональ призмы равна квадратному корню из сумме квадратов его трех измерений
то есть d = √( (6√2)² + (6√2)² + 12²) = √ 288 = 12√2 cm