1)Если вам даны точки с координатами (х1, у1, z1), (х2, у2, z2), (х3, у3, z3), найдите уравнение прямой, используя координаты любых двух точек, например, первой и второй. Для этого подставьте соответствующие значения в уравнение прямой: (х-х1)/(х2-х1)=(у-у1)/(у2-у1)=(z-z1)/(z2-z1). Если один из знаменателей равен нулю, просто приравняйте к нулю числитель.2Найти уравнение прямой, зная две точки с координатами (х1, у1), (х2, у2), еще проще. Для этого подставьте значения в формулу (х-х1)/(х2-х1)=(у-у1)/(у2-у1).Получив уравнение прямой, проходящей через две точки, подставьте значения координат третьей точки в него вместо переменных х и у. Если равенство получилось верное, значит все три точки лежат на одной прямой. Точно так же можете проверять принадлежность этой прямой других точек.4Проверьте принадлежность всех точек прямой, проверив равенство тангенсов углов наклона соединяющих их отрезков. Для этого проверьте, будет ли верным равенство (х2-х1)/(х3-х1)=(у2-у1)/(у3-у1)=(z2-z1)/(z3-z1). Если один из знаменателей равен нулю, то для принадлежности всех точек одной прямой должно выполняться условие х2-х1=х3-х1, у2-у1=у3-у1, z2-z1=z3-z1.<span>
Радиус, проведённый к точке касания, перпендикулярен касательной. Т.е. треуг-к АОВ - прямоугольный с прямым углом В. ОВ - катет, равный 9, что составляет 1/2 гипотенузы АО. Следовательно, угол А=30 град. Отсюда угол АОВ=180-90-30=60 град.
Осевое сечение -треугольник, площадь его равна (3*2*4)/2=12 см По теореме Пифагора находим образующую из того же треугольника -она гипотенуза треугольника (половиного от сечения )х=квадратный корень из (3*3+4*4)=5 ответ :площадь -12см;образующаю 5см