S(ABD)=S(ABO)+S(AOD), S(ACB)=S(ABO)+S(BOC),
докажем, что площадь треугольника АОД=площади треугольника ВОС
S(AOD)=1/2OA*ODsinAOD
S(BOC)=1/2BO*OCsinBOCугол ВОС=углу АОД как вертикальные, значит и
sin BOC=sinAOD
по свойству пропорции из АО*ВО=СО*ДО следует АО*ОД=ВО*ОС поэтому S(AOD)=S(BOC)
ВС||АВ. ∠ВСА=∠САD- накрестлежащие при пересечении параллельных прямых секущей. ∠ВАС=∠САD ( АС - биссектриса) ⇒ АВ=ВС=СD
Каждая из этих сторон равна 24√3:3=8√3 см
<u>Один из вариантов решения:</u>
AD=CD:sin30°=2•8√3=16√3 см
S ∆ ACD=CD•AD•sinCDA:2
S=4√3•16√3•0,5:2=48 см²
S ∆ACD=h•AD:2 ⇒h=2S:AD=96:16√3=2√3 см
<em>Площадь трапеции равна произведению полусуммы оснований на высоту. </em>
S ABCD=0,5•(BC+AD)•h=12√3•2√3=108 см²
Это легко делать. А ты не можешь
синусом угла прямоугольного треугольника называют отношение противолежащего катета к гипотенузе, следовательно синус угла ВАС равен 3/5, т.к. этот треугольник египетский (со сторонами 3,4,5)