Если радиус основания конуса равен 5,то основание осевого сечении будет равен 10,тогда за формулой площади ровнобедренного треугольника S=1/2 b*h,высота треугольника равна 12,тогда за теоремой Пифагора боковая сторона треугольника равна 13.За формулой площади боковой поверхности конуса Sб=п*r*l,где r радиус основания,а l-апофема конуса,площадь равна п*5*13=65п
Аналогично решай... Много писать просто)
Угол С=112
Угол аов=180-(24+32)=124
Угол вос=180-(32+56)=92
Угол соа=180-(24+56)=100
Дано:
ABCD - трапеция
BC ║ AD
AB = 10 см
CD = 17 см
BC = 20 см
CD = 41 см
СН ⊥ СD
CH - h - высота
h - ?
Решение:
1) Проведем СК ║ АВ
В получившемся параллелограмме АВСК противоположные стороны равны:
АВ = СК = 10 см
ВС = КА = 20 см
2) Рассмотрим ΔCKD
CD = 17 см
CK = 10 см
KD = AD - KA = 41 - 20 = 21 см
Высота СН треугольника СКD является высотой данной трапеции.
3)А теперь найдём площадь ΔCKD по трем его сторонам по формуле Герона.
где р - полупериметр
=84
S = 84 cм²
4)
А теперь с помощью формулы площади треугольника через высоту
найдём высоту h
h = CK = 8 см
Ответ: 8 см.