Если две хорды окружности пересекаются в точке,
то произведение отрезков одной хорды <u>равно</u>
произведению отрезков
другой хорды)))
4*9 = 4х * 1х
9 = х²
х = 3
4х = 12, 1х = 3
АВ = 12+3 = 15
1)у четырехугольника, в который вписана окружность,сумма противоположных сторон =полупериметру, у нас=42/2=21,т е CD=21-6=15
2)BC-катет,АВ-гипотенуза, cos∠B=BC/AB=6/15=2/5
3)BC-катет, АВ-гипотенуза,sin∠A=BC/AB=5/AB=0,4, AB=5/0,4=12,5
4)высота из вершины на основание в равнобедренном Δ делит основание пополам,АВ/2=40/2=20, сos∠A=20/AC, cos∠A=√(1-sin²∠A)=
√(1-0,36)=√0,64=0,8, AC=20/cos∠A=20/0,8=5/0,2=25
5)SΔ=8*5/2=20=h1*10/2, h1=40/10=4
S=1/2*6*9=27 ( если даны см или что то еще то они в квадрате)
Решение без синусов косинусов.
При данных условиях диагональ совместно с двумя сторонами параллелограмма образует равносторонний треугольник, который и надо раскручивать.
Точка О на рисунке лишняя.
1) Дано: ABCD - трапеция,∠А=90°, ∠С-∠В=48°.
Найти: ∠D, ∠С, ∠В
Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву).
2. Получим систему:
∠С+∠В=180°
∠С-∠В=48°
Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый).
Ответ: 90°, 114°, 66°
2) Дано: ABCD - прямоугл., ∠АВО=36°
Найти: ∠АОD
Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА.
2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°.
3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72°
Ответ: 72°