Решение: угол ADC=ABC=50°-как вписанные, опирающиеся на одну морду. Тогда, угол CAD=180°-ADC-ACD=180°-50°-80°=50°. Ответ:50°.
√2 sin 45°-cos 30°=√2*√2/2-√3/2=1-√3/2=1-0.87=0.13
sin 60°+ctg45=√3/2+1=0.78+1=1.87
tg135-tg0= tg(180-45)-tg0=tg0-tg45=0-1=-1
Если проведена биссектриса, то получаем два треугольника АСМ и ВСМ у которых углы ВСМ и АСМ равны 30°. Расстояние от точки М до АС это перпендикуляр опущенный из точки М на сторону АС, обозначим его МК. Получили прямоугольный треугольник КМС у которого сторона МК=25 см по условию. Так как угол КСМ=30°, то из свойств прямоугольного треугольника известно, что катет лежащий против угла 30° равен половине гипотенузы, значит гипотенуза СМ равна 25*2=50 см.
Расстояние от точки М до стороны ВС это перпендикуляр опущенный из точки М на сторону ВС, обозначим его MD. В получившемся прямоугольном треугольнике DMC, МС гипотенуза а MD - катет лежащий против угла 30°, следовательно MD=MC:2=50:2=25 см.
6.б) ∠A+∠B=90° ∠B=90°-∠A подставляем во второе уравнение
5∠B-2∠A=30° 5(90°-∠А)-2∠А=30° 450°-5∠A-2∠A=30°
-7∠A=30°-450° 7∠A=420° ∠A=420°:7=60°