Обозначим заданные углы α, сторона основания а, боковое ребро L.
Проекция бокового ребра на основание равна длине стороны основания (свойства правильной шестиугольной пирамиды).
cos α = a/L. (1)
В боковой грани sin (α/2) = (a/2)/L.
Используем формулу двойного угла:
cos α = 1 - 2sin²(α/2) и подставим значение синуса половинного угла.
cos α = 1 - 2*(a²/(4L²)) = 1 - a²/(2L²). (2)
Приравняем значения косинуса искомого угла по формулам (1) и (2).
a/L = 1 - a²/(2L²).
Замена: a/L = х.
Тогда х = 1 - (х²/2).
Получаем квадратное уравнение:
х² + 2х - 2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=2^2-4*1*(-2)=4-4*(-2)=4-(-4*2)=4-(-8)=4+8=12;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√12-2)/(2*1)=(√12/2)-(2/2)= √3-1 ≈ 0.73205;x_2=(-√12-2)/(2*1)=-√12/2-2/2=-√3-1 ≈ -2.73205 (отбрасываем).
Искомый угол равен arc cos (√3-1) = <span><span><span>
0,749469 радиан =
</span><span>
42,9414</span></span></span>°.<span><span><span /></span></span>
Если трапеция равнобедренная, то из вершин малого основания можно провести перпендикудяры к бОльшему основанию.
Тогда получается, что слева и справа от перпендикуляров будут треугольники, одна из сторон которых будет равна 2 см.
Угол неизвестен (или не указан?).
Если так, то высоту трапеции можно найти через тангенс.
Тангенс - это отношение противолежащего катета к прилежащему.
х - высоты. 2 см - катет треугольника
х\2=tg альфа => х=2 tg альфа.
после нахождения высоты можно найти и площадь трапеции.
S=(а1+а2)\2 *h - полусумма оснований умноженная на высоты трапеции.
Скласти речення з словосполученнями заяча душа осляча впертість баранячий розум яструбиний зір вовчий апетит
<span>Угол между двумя касательными, проведенными из одной точки, равен полуразности большей и меньшей высекаемых ими дуг
Меньшая дуга MN=100</span>°
Большая дуга MN=360-100=260°<span>
<MKN=(260-100)/2=80</span>°