1) Треугольник ACB - прямоугольный, угол С=90 градусов (т.к. он опирается на диаметр)
2)Дополнительное построение: CH перпендикулярна AB (высота)
Из п.1 и 2 => AC^2=AH*AB (свойство высоты, проведенной из вершины прямого угла прямоугольного треугольника)
Т.к. AC=AH, заменю и перенесу влево
AC^2-AC-12=0
D=1+48=49
AC=AH=(1+7)/2=4
3) BH=AB-AH
BH=12-4=8
4) CH^2=AH*BH (свойство высоты, проведенной из вершины прямого угла прямоугольного треугольника)
CH^2=4*8
CH=4√2 — расстояние от С до прямой АВ
5) S=1/2*AB*CH
S=12/2*4√2=24√2 — площадь треугольника ABC
По теореме Пифагора найдем гипотенузу. 6²+8²=100; гипотенуза=10.
Площадь данного треугольника
×гипотенуза×высота, проведенная к ней или
×катет 1×катет 2;
гипотенуза×высота=катет1×катет2; 10×высота=6×8; 10×высота=48 (а площадь АВС=24); высота=4,8.
Смотри рисунок.
Найдем АН=√(36-23,04)=√12,96=3,6
Площадь тр-ка АНС=
.
Тогда площадь другого тр-ка 24-8,64=15,36
Ответ: 8,64; 15,36.
S=d1*d2/2=d1*1,5d1/2=3d1^2/4=27
d1^2/4=9
d1^2=36
d1=-6, | не удовлетворяет условию
d1=6
d2=1,5d1=1,5*6=9
Ответ: 6 см и 9 см
Высота к гипотенузе --это среднее геометрическое отрезков гипотенузы, но которые высота разбивает гипотенузу...
BH² = AH * HC
катет --это среднее геометрическое гипотенузы и своей проекции на гипотенузу...
BС² = HС * АC
АВ² = АH * АC