Оскільки це прямий циліндр то при осьовому перерізі утворюється прямокутний чотирикутник. діагональ осьового перерізу нахилена до площини осови під кутом 60 градусів то з цього випливає що інші кути будуть30 і 90-градуів.
Як ми вже знаємо напроти кута 30 градусів лежить катет у двічі менший за гіпотенузу: 20/2=10-діаметр основи.
Нам потрібно знайти радіус тому 10/2=5(см)-радіус основи циліндра.
(Тільки накресліть правильно рисунок)
1) Порядок построения 1, 4, 6, 9, 6, 3
2) Из двух данных отрезков, используемых в качестве катетов, всегда можно построить прямоугольный треугольник (в разумных пределах)).
Дано
ромб ABCD
угол АВС = 62град.
Найти угол САD
Решение
Рассмотрим ромб ABCD
Все стороны в ромбе равны и углы то же, отсюда можно сделать вывод, что
угол DAB = углу BCD и угол ABC = углу CDA = 62град.
Сумма углов в ромбе равна 360град.
Из этого получаем, что угол DAB + угол BCD =360-(62*2)=360-124=236град.
угол DAB = углу BCD =236:2=118град.
АС - является диагональю ромба
Диагонали ромба делят углы, из которых оны выходят пополам, следовательно, что угол CAD = углу CAB = 118:2=59град.
Ответ: угол CAD = 59град.
1)По теореме Пифагора длина ьоковой стороны треугольника равна √12²+5²=13
2) пЛОЩАДЬ ТРЕУГОЛЬНИКА равна половине произведения основания на высоту треугольника, т.е. S=1/2*a*h
пЛОЩАДЬ ТРЕУГОЛЬНИКА равна половине произведения периметра треугольника на радиус вписанной окружности, т.е. S=1/2*P*r
Отсюда r=(10*12)/(10+13+13)=10/3
3)Рассмотрим треугольник ОАМ, АО=R, ОМ=12-R, АМ=5
По теореме Пифагора АМ²+ОМ²=АО²
R²=(12-R)²+25
R²=144-24R+R²+25
24R=169
R=169/24
1) ВС=AD+CD=20 (см)∆ АВС равнобедренный, АВ=ВС=20 (см)∆ АВD- прямоугольный AD=√(AB²-BD²)=√144=12 (см)Из ∆ АDC гипотенуза АС=√(AD²+CD²)=√160=4√10 смS (ABC)=AD•BC:2=12•20:2=120 см²