Точка М лежит на прямой ВС и треугольник АВМ имеет общую сторону АВ с треугольником АВС. Рассмотрим треугольник АВМ. В нем угол АМВ прямой по условию; угол АМВ и угол АВС - смежные, следовательно величина угла АВМ равен 180 - 120 = 60градусов. Значит угол ВАМ в треугольнике АВМ равен 180 - (90+60) = 30градусов. Впрямоугольном треугольнике сторона, лежащая против угла 30 градусов равна половине гипотенузы. Следовательно в треугольнике АВМ длина ВМ будет равна половине длины АВ и рана 9 (18 : 2 = 9)
3. Пусть О - точка пересечения диагоналей.
∠CFO = ∠EDO как накрест лежащие при пересечении параллельных прямых CF и DE секущей FD,
∠COF = ∠EOD как вертикальные, значит
ΔCOF подобен EOD по двум углам.
CF : DE = FO : OD
CF : 12 = 12 : 8
CF = 12 · 12 / 8 = 144 / 8 = 18
4. ∠QTH = ∠QNP как соответственные при пересечении параллельных прямых ТН и NP секущей QN,
угол при вершине Q общий для треугольников QTH и QNP, значит эти треугольники подобны по двум углам.
TH : NP = QT : QN
TH = NP · QT / QN = 25 · 12 / (12 + 8) = 25 · 12 / 20 = 15
5. OC : OK = 8 : (8 + 12) = 8 : 20 = 2 : 5
OB : OM = 6 : (6 + 9) = 6 : 15 = 2 : 5
ΔBOC подобен ΔМОК по двум пропорциональным сторонам и углу между ними.
ВС : МК = 2 : 5
ВС = 2 · 18 / 5 = 36/5 = 7,2
проще простого, (нарисуй рисунок для наглядности), предположим, что АВ и О1О2 не перпендикулярны, значит отрезки АО1 и ВО1 не равны, а такого быть не может, т.к. О1А и О1В радиусы одной окружности, соответсвенно делая вывод из всего вышесказанного получаетсy, что АВ перпендикулярно О1О2 в любом случае