Угол АВО = углу СОD = 40° (вертикальные)
угол АОD = углу ВОС = 180°-40° = 140°
АМ = 5
S(ABC) = 1/2*5²*sin(60°) = 25/2*√3/2 = 25√3/4
S(ABC) = 1/2*AB*CZ = 25√3/4
1/2*5*CZ = 25√3/4
CZ = 5√3/2
Т.к. медианы точкой пересечения делятся в отношении 2 к 1
MZ = 1/3*CZ = 5/(2√3)
В прямоугольном треугольнике MPZ
PZ = CZ
по Пифагору
MP² + MZ² = PZ²
MP² + (5/(2√3))² = (5√3/2)²
MP² = (5√3/2)² - (5/(2√3))² = 25*3/4 - 25/(4*3) = 50/3
MP = 5√(2/3)
ΔCVW пропорционален ΔABC с коэффициентом пропорциональности 2/3
VW = 2/3*AB = 10/3
и финальный аккорд
S(VWP) = 1/2*VW*MP = 1/2*10/3*5√(2/3) = 25/3√(2/3)
A·b=|a|·|b|·cosα
a·b=2·3·(-1/2)=-3
Ответ -3
Ответ зависит уже от угла между плоскостями ABC и AB1C,
Площадь ABC считается легко, Ответ будет равен этой площади, умноженной на косинус угла между плоскостями (он же - угол ВСВ1).