Построим осевое сечение данной в условии фигуры.
Осевое сечение усеченного конуса - это<u> равнобедренная трапеция</u> ( образующие - боковые стороны, основания - диаметры оснований усеченного конуса).
Рисуем равнобедренную трапецию АВСД .
Из центра М верхнего основания опустим перпендикуляр МК к середине нижнего основания.
Получилась прямоугольная трапеция АВМК, равная половие осевого сечения. Углы ВМК и МКА - прямые.
Из М проведм к А прямую.
Эта <u>прямая АМ</u> и есть искомое<u> расстояние от середины меньшего основания до окружноти большего.</u>
А для трапеции АВМК это диагональ АМ.
И найти ее нужно из прямоугольного треугольника АМК, где АМ - гипотенуза, АК и МК - катеты.
Из вершины В опустим высоту ВН к большему основанию.
Из прямоугольного треугольника АВН, где АН - разность радиусов оснований,
т.е.АН=30-18=12, найдем высоту ВН по т. Пифагора ( или обратив внимание, что треугольник АВН - египетский с отношением сторон 3:4:5).
ВН=16
Так как МК = ВН,
АМ²=АК²+МК²=900+256=1156
АМ=√1156=34
Ответ: расстояние от середины меньшего основания до окружноти большего равно 34
АВ(7-4;-9+3)
АВ(3,-6)
...............
Высота h трапеции как катет, лежащий против угла в 30 градусов, равна:
h = 7*sin 30° = 7*(1/2) = 3,5.
Средняя линия L трапеции равна:
L = (6 + 18)/2 = 24/2 = 12.
Искомая площадь S трапеции равна:
S = hL = 3,5*12 = 42 кв. ед.
1) Рассмотрим треугольник АОС и треугольник BOD: АО=ОВ, ОС=ОД - поскольку т. О - середина отрезков АВ иСД, Угол АОС= углу ВОД - как вертикальные.
Треугольник АОС = треугольнику BOD - по двум сторонам и углу между ними.
2) Из равенства треугольников следует равенство соответствующих углов:
угол АОС=углу ОДВ=20°,
По свойству углов треугольника: угол САО=180°-(115°+20°)=45°