Пусть проекция C на (ABD) - точка O. В треугольнике ABC проведем высоту CH, и в треугольнике ABD проведем высоту DH. DH проходит через O, и H - середина AB (треугольники ABC, ABD правильные). Угол CHO - линейный дли двугранного угла CABD, так как CH перпендикулярно AB и OH перпендикулярно AB. Значит, достаточно найти этот угол. CH - высота правильного треугольника, а OH - треть высоты правильного треугольника со стороной такой же длины. Тогда cosOHC=OH/CH=1/3, а угол OCH равен arccos1/3.
Посмотрите предложенное решение.
Суть: угол между касательной и радиусом есть прямой угол; центральный угол равен градусной мере дуги, на которую он опирается.
Рисунок см. во вложении. Все предыдущий автор верно описал. Просто небольшие пояснения. При продолжении меньшего катета АС до пересечения с окружностью получим точку N, причем КN - диаметр, т.к. угол КМN - прямой (KM||BC, как средняя линия). Вот и получился прям-ый тр-ик KMN, вписанный в окружность, подобный исходному, т.к угол NKM = углу ВАС( у них взаимно перпендикулярны стороны). Гипотенуза исходного тр-ка АВ=10 (по т. Пифагора), пусть KN = d - диаметр окр-ти, КМ = 4, как ср. линия исходного тр-ка.
Теперь можно составить пропорцию:
d/AB = KM/AC, или d/10 = 4/6
Отсюда:d = 20/3, а радиус: R = 10/3
Средняя линия трапеции равна полусумме её оснований