Пусть О - центр окружности. Т.к. касательная пересекается с окружностью только в одной точке, то А и С - точки касания. Отсюда AD=DC=5 как отрезки касательных из одной точки. Кроме того, прямая АО, которая пересекает BC в точке F перпендикулярна AD. Значит OF - высота равнобедренного треугольника BCO, ведь BC||AD. Отсюда F - середина BC. т.е. FC=1. Значит cos∠D=(AD-FC)/DC=(5-1)/5=4/5. Отсюда OC=DC*tg(∠D/2)=DC*√((1-cos∠D)/(1+cos∠D))=5√((1-4/5)/(1+4/5))=5/3.
Фото не загружается попробуйте другое
Дано:
NT=13sm< N=49градусов, P=65градусов
Найти: Площадь NPT
Решение
По теореме синусов найдем PT
Найдем угол T
T=180-N-P=180-40-65=75(градусов)
Восползуемся формулой нахождения площади, по двум сторонам и углу между ними
угол А=60гр.
угол В=90гр.
АС+АВ=26,4см. (т.к. против меньшего из углов лежит меньшая из сторон)
АС-?
1. угол С=90-60=30гр.
2. по свойству прямоугольного треугольника известно, что катет, лежащий против угла в 30 градусов, равен половине гипотинузы.
3. пусть AB=х, тогда АС=2х
2х+х=26,4
3х=26,4
х=8,8 см. (АВ)
4. АС=8,8*2=17,6 см.
Ответ: 17,6 см.
1.10+50=60(град)-угол АОВ
2. 60:2=30(град)-угол АОМ(т.к это биссектриса)
3.30-10=20(град)-угол СОМ.
уг СОМ+угАОС=угАОМ
угАОС+угСОМ+угМОВ=уг АОВ
ответ: уг СОМ=20градусов