3х+3х+2х+2х=90
10х=90
Х=9
AB=CD=2*9=18см
BC=AD=3*9=27cм
Ответ:18,18,27,27 см
1.
РО⊥АВС.
ΔРОА = ΔРОВ = ΔРОС по катету и гипотенузе (РО - общий катет, РА = РВ = РС по условию), значит
ОА = ОВ = ОС = R - радиус окружности, описанной около ΔАВС.
По формуле Герона:
Sabc = √(p(p - AB)(p - AC)(p - BC)) = √(10 · 4 · 4 · 2) = 8√5 см²
Sabc = AB·AC·BC / (4R)
8√5 = 6·6·8 / (4R) = 72 / R
R = 72 / (8√5) = 9 / √5 = 9√5/5 см
ΔРОА: ∠РОА = 90°, по теореме Пифагора
РА = √(РО² + АО²) = √(56 + 81/5) = √(361/5) = 19 / √5 = 19√5/5 см
2.
МО⊥АВС.
ΔМОА = ΔМОВ = ΔМОС по катету и гипотенузе (МО - общий катет, МА = МВ = МС по условию), значит
ОА = ОВ = ОС = R - радиус окружности, описанной около ΔАВС.
R = BC / (2sin∠A) = 12 / (2 · √2/2) = 12 / √2 = 6√2 см
Из прямоугольного ΔМОА по теореме Пифагора:
МА = √(МО² + АО²) = √(36 + 72) = √108 = 6√3 см
В 1 и 3 задаче найди диагональ по теореме Пифагора и раздели её на двое будет радиус
Во второй задаче радус умножал на два будет диагональ
АВ=25 = КОРЕНЬ(400+225)
Расстояние между прямой и АВ - это перпендикуляр, опущенный из тС на АВ= СО
площадь треуг= 1/2*АС2*СВ2=150, также S треуг.=1/2* СО*АВ=150, тогда СО=12