Понятно, что радиус вписанной окружности равен 4. Тогда весь вопрос стоит только в том, чтобы найти неизвестную длину отрезка YC (все остальные длины находятся из того, что длины отрезков касательной, проведенных из одной точки, равны).
Её можно найти, воспользовавшись подобием. CY/YD = AX / XB = 1/2, откуда CY=1/2*YD=2.
Площадь = полусумме оснований * высоту = 0.5*((4+2)+(4+8))*8 = 72
1/ ABCD ромб, О центр окржности и точка пересечения диагоналей ромба. ОТ - радис вписанной окружности и высота в треугольнике АОВ. По условию АВ=1, угол АВС 30 градусов. => в треугольнике АОВ угол В 15 градусов,
треугольники АОВ и ОТВ подобны => АВ/ОВ=OT/AO=> OT=(AB*AO)/OB=AO/OB=ctg 15
2/
ABCD ромб, О центр окржности и точка пересечения диагоналей ромба. ОТ - радис вписанной окружности и высота в треугольнике АОВ. По условию OT=2, угол АВС 30 градусов. => в треугольнике АОВ угол В 15 градусов,
треугольники АОВ и ОТВ подобны => АВ/ОВ=OT/AO=> AB=OB*OT/AO=OT*tg 15=2tg15
3/ Пусть АВ=с=1, угол АСВ=γ, радиус описанной окружности равен R=abc/(4S)=abc/(4*½ab sinγ)=c/2sinγ=1/(2*½)=1
<em>БИССЕКТРИСА любого угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам.
</em>Биссектриса СМ делит АВ на отрезки в отношении 18:12=3:2
Тогда АМ=15:5*3=9,
МВ=15:5*2=6
Биссектриса ВК также проходит через центр вписанной окружности и делит сторону МС треугольника МВС в отношении ВС:МВ=12:6=2:1
<span>Ответ: СО:ОМ=2:1
Центр вписанной окружности треугольника делит биссектрису угла С в отношении 2:1, считая от вершины угла С </span>
Судя по тому, что точки С и D расположены дальше точек А и В - прямые скрещивающиеся.. В случае пересечения прямых точки на плоскостях либо были бы на одном расстоянии от нас, наблюдателей, либо если С дальше, то В ближе и наоборот.
А вот и более "геометричное" рассуждение:
Если бы прямые пересекались, то они находились бы в одной плоскости. К этой плоскости бы принадлежали и точки А, В, С, D
Убедимся, что это не так, для этого предположим, что прямые пересекаются.
На любой плоскости, пересекающей параллельные плоскости должны образоваться в местах пересечения Параллельные прямые.
Проведем прямые через АС и ВD. Эти прямые не параллельны, значит они не могут принадлежать одной плоскости, пересекающей две данные плоскости (ведь плоскости эти по условию параллельны). Следовательно, предположение не верно, данный прямые не лежат в одной плоскости, значит они скрещивающиеся.
Ура!))