Обозначим длину прямоугольника A (см), а его ширину - B (см). По условию его периметр равен 544 (см), т.е. 2*(A+B)=544 (см). Также по условию известно, что его стороны пропорциональны числам 5 и 12, то есть длина относится к 12 (большая сторона соотносится с большим числом) также, как и ширина относится к 5, получаем: A/12=B/5. Выразим A=(12*B)/5 и подставим в периметр: 2*((12/5)*B+B)=544→2*((17/5)*B)=544→(17/5)*B=272→B=(272*5)/17=80 (см) - ширина прямоугольника. Тогда длина A=(12*80)/5=192 (см). Диагональ найдем как гипотенузу прямоугольного треугольника по теореме Пифагора: √(192²+80²)=√(36864+6400)=208 (см). Ответ: 208 см.
Так как∠АВС=90° и BD⊥AC, мы можем сказать, что AD*CD=BD²
12*16=BD²
BD=
=8
А далее находим стороны по Пифагору: AB=
=4
CB=
Угол 1 равен 80 градусам,угол два равен 45 градусам
ΔABCподобен ΔBDC по двум углам один отмечен а ∠С общий
AB/BD=AC/BC
10.4/8=AC/6
AC=10.4X6 / 8=7.8
Нам известен один из катетов, нам надо найти второй катет. Для начала мы найдем тангенс угла В, это позволит нам связать оба катета и угол В, так как <u><em>
тангенсом острого угла в прямоугольном треугольнике называют отношение противолежашего катета к прилежащему.</em></u><em>
</em>
Так как угол В острый, мы можем смело использовать формулы: