Здесь не хватает данных для однозначного ответа. В зависимости от величины BC это отношение может быть любым.числом меньшим 1/3.
Гипотенузу МК находим по теореме Пифагора.
МК =√(МР²+РК²) = 5 м.
Средняя линия ВС параллельна гипотенузе и равна ее половине, т.е. 2,5 м.
Решение:
Площадь трапеции равна:
S=(a+b)*h/2 - где а и b - основания трапеции; h- высота
Зная верхний угол В найдём углы при основании трапеции:
360 - 2*150=60 (град) - сумма двух углов при основании
Каждый угол при основании, так как трапеция равнобедренная, равен:
60 : 2=30 (град) - углы A и D по 30град.
Найдём h из sinD=sin30 sin30=1/2
sinD=sinA=h/CD=h/AB
1/2=h/6
h=1/2*6=3 (см)
Найдём нижнее основание:
если мы опустим высоты из углов B и С , то получим два прямоугольных треугольника, из которых мы найдём нижний катет, который является частью нижнего основания. Их здесь два.
По теореме Пифагора найдём нижний катет:
6²-3²=36-9=27 √27=√(9*3)=3√3
Нижнее основание равно:
4+2*3√3=4+6√3(см)
Отсюда:
S=(4+4+6√3)*3/2=(8+6√3)*3/2=2(4+3√3)*3/2=12+9√3(см²)
Ответ: S=(12+9√3)см²
Треугольники ABD и BCD подобны , следовательно треугольник ABD- равнобедренный, где AB=BD- катеты
AD²=2×BD²
BD²=AD²/2=4a²/2=2a²
BD=√2a=a√2
BD/AD=(a√2)/(2a)=√2/2
ответ:√2/2
ΔAKE = ΔKDC по двум сторонам и углу между ними ⇒ KD = KE ⇒
⇒ ∠KDE = ∠KED ⇒ ∠ADK = ∠KEC ⇒ ΔAKD = ΔKEC по двум сторонам и углу между ними ⇒ AD - BC ⇒ ΔABD = ΔEFC по стороне и двум прилегающим углам ⇒ AB = FC ⇒ BK = KF, что и требовалось.