В прямоугольнике все углы равны 90° => угол СВА = 90°
Рассмотрим треугольник АВС
1) Угол СВА = 90°; угол ВАС = 60° => угол ВСА = 30°
2) (По свойству прямоугольного треугольника) Напротив угла 30° лежит катет, равный половине гипотенузы => АС = 2×АВ = 2×6см = 12см
АС - диагональ => АС = 12см
Ответ: 12
. Диагонали равнобедренной трапеции равны, поэтому <span>OC:AO=OB:DO=</span>2:5 и, так как <span>∢BOC=∢AOD</span>, то <span>ΔAOD∼ΔBOC</span> (по второму признаку подобия треугольников: две стороны одного треугольника пропорциональны двум сторонам другого и углы, лежащие между этими сторонами равны). 2. Так как <span>ΔAOD∼ΔBOC</span>, то <span><span>ADBC</span>=<span>AOOC</span>=<span>52</span></span>. Из этого соотношения выражаем и вычисляем большее основание трапеции <span>AD</span>: <span>AD=<span><span>5×BC</span>2</span>=<span><span>5×12</span>2</span>=30</span> см. 3. Вычисляем <span>AE</span>: <span>AE=<span><span>AD−BC</span>2</span>=<span><span>30−12</span>2</span>=<span>182</span>=9</span> см. 4. Так как <span>ΔABE</span> — прямоугольный треугольник, то находим боковую сторону <span>AB</span> по теореме Пифагора: <span>AB=<span><span><span>BE2</span>+<span>AE2</span></span><span>−−−−−−−−−−</span>√</span>=<span><span><span>122</span>+<span>92</span></span><span>−−−−−−−</span>√</span>=<span><span>144+81</span><span>−−−−−−−</span>√</span>=<span>225<span>−−−</span>√</span>=15</span> см. 5. Находим периметр равнобедренной трапеции <span>ABCD</span>: <span>P(ABCD)=</span><span>2×AB+AD+BC=2×15+30+12=72</span> см.
диаметр равен диагонали прямоугольника. Диагональ - гипотненуза в треугольнике с катетами 12 и 15см: корень квадратный из 12*12+15*15=369
Площадь круга через диаметр=1/4п*d^2
S=1/4*n*369=92,25n=95,25*3,14=289,665
^2- во второй степени
Если диагонали в точке пересечения деляться пополам параллелограмм,а значит противоположные стороны равны
Нет не срочно нужно самаму делать вы только на деитис на пешебник нужно делать всё сам и будеш отличником