МЕНЯЮ СИМВОЛ УГЛА ( < на ∠) .
------------------------------------------------
Пусть ΔABC ; точки касания M∈ [AB] ,N∈[BC] и K∈[AC] и Пусть ∠KMN =α ;∠KNM =β.
∠KMN =180° -(∠KMA +∠NMB) =180° -((180°-∠A)/2 +(180° -<B)/2)) =(∠A+∠B)/2.
∠A+∠B =2α (1) ; * * * ⇒ ∠A =2α -∠B * * *
аналогично :
∠C+∠B=2β (2) . * * * ⇒ ∠C =2α -∠B * * *
Суммируем (1) и (2), получим:
(∠A+∠B+∠C )+∠B =2α +2β ;
180°+∠B=2α +2β ;
∠B =2(α +β) -180°.
поставляя это значение в (1) и (2) соответственно получаем :
∠A =2α - ∠B = 180° -2β ;
∠C =2α - ∠B = 180° -2α .
ответ: 2(α +β) -180° , 180° -2α , 180° -2β .
* * * * * * * комментария * * * * * * *
ΔAMK , ΔBMN равнобедренные.
* * * * * * * По другому * * * * * * *
∠AMK =(дугаMK)/2 =(∠MOK)/2 =(180° -∠A)/2.
∠NMB =(дугаMN)/2 =(∠MON)/2 =(180° ∠B)/2.
и т.д.
MK=MN+NK=34+8=42 см
ответ: 42 см
Тк мн - ср линия бц, она равна половине бц
принимаем мн за икс, соответственно бц = 2Х
делаем уравнение : х+2х=15
3Х=15
отсюда находим х
х=5
х- это мн
бц = 2мн ,соотвественно, 5х2= 10
бц=10
Ты не уточнил какой треугольник, но если он прямоугольной тогда это решение тебе подойдёт
Докажем, что треугольники СОА И ВОМ-подобные.
1) Угол СОА=ВОМ (как вертикальные)
2) Угол АСО=ВМО (как накрест лежащие при секущей СМ и параллельных прямых СА и ВМ)
3) Угол САО=ОВМ (как накрест лежащие при секущей ВА и параллельных прямых СА и ВМ )
Следовательно, треугольники СОА И ВОМ-подобные
Теперь можем составить пропорцию и найти сторону ОМ отношению СА:ВМ=СО:ОМ, отсюда ОМ=ВМ*СО/СА=6*12/18=4 см, из этого СМ=4+12=16 см
Ответ: СМ=16 см